class for performing Linear Fitting with Origin's internal fitting engine
◆ fix_intercept()
def originpro.analysis.LinearFit.fix_intercept |
( |
|
self, |
|
|
|
val |
|
) |
| |
fix intercept to a value
Parameters:
val(float): intercept value
Returns:
none
Examples:
lr=op.LinearFit()
lr.fix_intercept=0.6
◆ fix_slope()
def originpro.analysis.LinearFit.fix_slope |
( |
|
self, |
|
|
|
val |
|
) |
| |
fix slope to a value
Parameters:
val(float): slope value
Returns:
none
Examples:
lr=op.LinearFit()
lr.fix_slope=0.6
◆ report()
def originpro.analysis.LinearFit.report |
( |
|
self, |
|
|
|
band = 0 |
|
) |
| |
perform the fitting and generate the report. You need to end the fitting by either calling result or report
Parameters:
band (int): confidence and prediction bands. 0=none,1=confidence,2=prediction,3=both
Returns:
(tuple): range strings of the report sheet and the fitted curves
Examples:
lr = op.LinearFit()
lr.set_data(wks, 1, 2)
r, c = lr.report(1)
wReport=op.find_sheet('w', r)
wCurves=op.find_sheet('w', c)
◆ result()
def originpro.analysis.LinearFit.result |
( |
|
self | ) |
|
perform the fitting and return the parameters. You need to end the fitting by either calling result or report
Return:
(dict) fitting parameters and statistics from the fit
Examples:
lr = op.LinearFit()
lr.set_data(wks, 1, 2)
rr = lr.result()
b =rr['Parameters']['Slope']['Value']
b_err =rr['Parameters']['Slope']['Error']
◆ set_data()
def originpro.analysis.LinearFit.set_data |
( |
|
self, |
|
|
|
wks, |
|
|
|
x, |
|
|
|
y, |
|
|
|
err = '' |
|
) |
| |
set the XY data with optional error bar column
Parameters:
wks(worksheet):
x,y(int or string):column index or name
err(int or string):column index or name
Returns:
none
Examples:
lr = op.LinearFit()
wks=op.find_sheet()
lr.set_data(wks, 1, 2)
The documentation for this class was generated from the following file:
- src/originpro/analysis.py